Efficient energy consumption is crucial for achieving sustainable energy goals in the era of climate change and grid modernization. Thus, it is vital to understand how energy is consumed at finer resolutions such as household in order to plan demand-response events or analyze the impacts of weather, electricity prices, electric vehicles, solar, and occupancy schedules on energy consumption. However, availability and access to detailed energy-use data, which would enable detailed studies, has been rare. In this paper, we release a unique, large-scale, synthetic, residential energy-use dataset for the residential sector across the contiguous United States covering millions of households. The data comprise of hourly energy use profiles for synthetic households, disaggregated into Thermostatically Controlled Loads (TCL) and appliance use. The underlying framework is constructed using a bottom-up approach. Diverse open-source surveys and first principles models are used for end-use modeling. Extensive validation of the synthetic dataset has been conducted through comparisons with reported energy-use data. We present a detailed, open, high-resolution, residential energy-use dataset for the United States.
translated by 谷歌翻译
疏散计划是灾难管理的关键部分,其目标是将人员搬迁到安全和减少伤亡。每个疏散计划都有两个基本组件:路由和调度。但是,这两个组件与目标的联合优化,例如最大程度地减少平均疏散时间或疏散完成时间,这是一个计算问题上的问题。为了解决它,我们提出了MIP-LNS,这是一种可扩展的优化方法,将启发式搜索与数学优化结合在一起,并可以优化各种目标函数。我们使用来自德克萨斯州休斯敦的哈里斯县的现实世界道路网络和人口数据,并应用MIP-LNS来查找该地区的疏散路线和时间表。我们表明,在给定的时间限制内,我们提出的方法在平均疏散时间,疏散完成时间和解决方案的最佳保证方面找到了比现有方法更好的解决方案。我们在研究区域进行基于代理的疏散模拟,以证明解决方案的功效和鲁棒性。我们表明,即使撤离人员在一定程度上偏离了建议的时间表,我们的规定疏散计划仍然有效。我们还研究了疏散计划如何受到道路故障的影响。我们的结果表明,MIP-LN可以使用有关道路估计截止日期的信息,以成功,方便地撤离更多人,以提出更好的疏散计划。
translated by 谷歌翻译
联合学习(FL)是一个分布式学习范式,使相互不信任的客户能够协作培训通用的机器学习模型。客户数据隐私在FL中至关重要。同时,必须保护模型免受对抗客户的中毒攻击。现有解决方案孤立地解决了这两个问题。我们提出了FedPerm,这是一种新的FL算法,它通过结合一种新型的内部模型参数改组技术来解决这两个问题,该技术可以放大数据隐私,并基于私人信息检索(PIR)技术,该技术允许允许对客户模型更新的加密聚合。这些技术的组合进一步有助于联邦服务器约束从客户端的参数更新,从而减少对抗性客户的模型中毒攻击的影响。我们进一步介绍了Fedperm独特的超参数,可以有效地使用Model Utilities进行计算开销。我们对MNIST数据集的经验评估表明,FEDPERM对FL中现有差异隐私(DP)执法解决方案的有效性。
translated by 谷歌翻译
本文在联合学习(FL)设置中介绍了主题的颗粒状隐私,其中一个受试者是一个人,其私人信息由限制在单个联邦用户中或在多个联邦用户中分布的几个数据项体现。我们正式定义了FL的主题级别差异隐私的概念。我们提出了三种实施主题级DP的新算法。这些算法中的两种分别基于用户级别的本地差异隐私(LDP)和组差异隐私的概念。第三算法是基于对参加培训迷你批次的受试者的层次梯度平均(HigradavgDP)的新颖概念。我们还为多个联邦用户的受试者介绍了隐私损失的水平组成。我们表明,在最坏情况下,水平成分等效于顺序组成。我们证明了对所有算法的主题级别的DP保证,并使用女性和莎士比亚数据集对其进行经验分析。我们的评估表明,在我们的三种算法中,HigradavgDP提供了最佳的模型性能,接近使用基于DP-SGD的算法训练的模型,该算法提供了较弱的项目级别隐私保证。
translated by 谷歌翻译
联合学习中的隐私(FL)以两种不同的粒度进行了研究:项目级,该项目级别保护单个数据点和用户级别,该数据点保护联邦中的每个用户(参与者)。几乎所有的私人文献都致力于研究这两种粒度的隐私攻击和防御。最近,主题级隐私已成为一种替代性隐私粒度,以保护个人(数据主体)的隐私(数据主题),其数据分布在跨索洛FL设置中的多个(组织)用户。对手可能有兴趣通过攻击受过训练的模型来恢复有关这些人(又称emph {data主体})的私人信息。对这些模式的系统研究需要对联邦的完全控制,而实际数据集是不可能的。我们设计了一个模拟器,用于生成各种合成联邦配置,使我们能够研究数据的属性,模型设计和培训以及联合会本身如何影响主题隐私风险。我们提出了\ emph {主题成员推理}的三个攻击,并检查影响攻击功效的联邦中所有因素之间的相互作用。我们还研究了差异隐私在减轻这种威胁方面的有效性。我们的收获概括到像女权主义者这样的现实世界数据集中,对我们的发现赋予了信任。
translated by 谷歌翻译
基于变压器的语言模型导致所有域的所有域都令人印象深刻的自然语言处理。在语言建模任务上预先预订这些模型以及在文本分类,问题应答和神经机翻译等下游任务上的FineTuning它们一直显示了示例性结果。在这项工作中,我们提出了一种多任务FineTuning方法,它将双语机器翻译任务与辅助因果语言建模任务相结合,以提高印度语言前任务的性能。我们对三种语言对,Marathi-Hindi,Marathi-English和Hindi-English进行了实证研究,在那里我们将多任务FineTuning方法与标准的FineTuning方法进行比较,我们使用MBart50模型。我们的研究表明,多任务FineTuning方法可以是比标准FineTuning更好的技术,并且可以改善语言对的双语机器换算。
translated by 谷歌翻译